Index

Go Top

 

Go Top

 

Go Top

 

Go Top

 

 

 

Chapter 11  DFT and FFT Processing

 

 

 

 

 

 

 

 

 

Relatives of DFT

 

       Definitions

 

       Formation Relationship

 

       Mathematic Relationship

 

 

 

Properties of DFT

 

      Periodical Convolution Law

      Circular Convolution Law

      Symmetry

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relatives of DFT

 

  Equations

 

Laplace Transform

   

Fourier Transform

 

Z Transform

  

 

DTFT

  

 

DFS

 

 

DFT

 

 

                 (k = 0, 1, ? N-1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Formation Relationship

                       

LT

Complex Exponential 

s→jω

Imaginary Exponential

FT

 Time Continuous

e→z ,  t→n

Time Discrete

ZT

 Frequency Continuous

z→e

  Frequency Discrete

DTFT

Inf. Time, Cont. Freq.

(-∞,∞)(0,N-1) Ω→2πk/N

Finite Time, Discr. Freq.

DFS

 Periodic Signal

ck→X[k]

  Nonperiodic Signal

DFT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Mathematic Relationship

 

       Laplace & Z

           

 

 

       Fourier & Z

 

           

 

 

       DFT & Z

           

 

 

 

       DFT & DTFT

         

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties of DFT

 

 

 

  Periodical Convolution Law

     Given Periodical Sequences x1[n], x2[n], x3[n]

     with  period of N, DFT of them are X1[k], X2[k],

       X3[k].        If  X3[k] = X1[k] X2[k] ,  then

        

 

 

 

  Circular Convolution Law

      Circular Shift ( Non-Periodical x[m] )

      

                            xp[n-m]RN[n]

      m Samples Circular Shift of x[n], where

      RN[n] is Rectangular Window of length N.

 

 

      Circular Convolution:

                        

 

 

  Circular Convolution Law

 

       Given Finite Length Sequences x[n], h[n], y[n]

        with same Length N, DFT of them are X [k],

        H [k], Y [k].  If  Y [k] = X [k] H [k] , then

 

                   y[n] = x[n] # h[n]

              

        :Convolution can be done by DFT !

        :If length of two sequences are M & N,

             one of them must be expanded into

             a (M+N-1) periodical sequence.

 

 

  Symmetry

Signal

DFT

 x[n]

X[k]

 x*[n]

X*  [-k]

 x[-n]

X*[k]

Re{ x[n] }

Xe[k]

j Im{ x[n] }

Xo[k]

xe[n]

Re{ X[k] }

xo[n]

j Im{ X[k] }

X[n]

N x[-k]

 

        Even Symmetry Sequence:

              xe[n] = ( x[n] + x[-n] ) / 2

              Xe[k] = ( X[k] + X[-k] ) / 2

        Odd Symmetry Sequence:

              xo[n] = ( x[n] - x[-n] ) / 2

              Xo[k] = ( X[k] - X[-k] ) / 2