Index

 

Go Top

 

 

Go Top

 

 

 

Go Top

 

 

 

Go Top

 

 

 

 

 

 

 

 

 

 

 

Go Top

 

 

 

Chapter 9  Finite Impulse Response Filters

 

 

 

 

 

 

 

 

Approximate An Ideal Low Pass Filter 理想低通滤波器的近似

 

 

Windows for FIR Filter Design

FIR滤波器设计用的窗函数

 

 

Filter Features 滤波器指标

 

 

Steps of Windowed FIR Design 窗函数FIR滤波器设计步骤

 

 

Examples

 

 

 

 

 

 

 

 

 

 

 

 

 

HomeWork: p379: 9.12, p380: 9.25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approximate Ideal Low Pass Filter

    Ideal Low Pass Filter Shape

                                                      

   Impulse Response of Ideal LPF

                        

                          

           Infinite Length, Non-Casual!

        Windowing! 

      Rectangular Window

 

      Its Frequency Response:   

                  

          

      Multiply hd [n] with Window w[n]:

                           h[n] = hd [n] w[n]

                          H(Ω) = Hd(Ω) * W(Ω)

          

      Non-Ideal Low Pass Filter Shape:

          Cut-off frequency:  Ωc    

20log|H(Ωc)|/|H(0)| = 3 dB

                         Finite Length in Time,

                  Smearing(拖尾) in Frequency.

Practicability

实用性

   

Quality

品质

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filter Features

      Non-Ideal Low Pass Filter Shape:

      Pass band edge frequency: Ωp

                       通带边缘频率

      Stop band edge frequency: Ωs

                       阻带边缘频率

      Transition width: |Ωs - Ωp|

                       过度带宽

      Pass band ripple: dp

                       通带波纹

      Stop band ripple: ds

                       阻带波纹

      Stop band attenuation:   -20log(ds)

                       阻带衰减

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Windows for FIR Filter Design

 

Hanning Window:

           |n| ≤ N

 

Hamming Window:

 

           |n| ≤ N

 

Blackman Window:

           |n| ≤ N

 

Kaiser Window:

 

Zero Order Modified Bessel Function

零阶修正贝塞尔函数

           |n| ≤ N

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steps of Windowed FIR Design

    Low Pass Filter

        According to the Given Filter Specification

                { fpass , fstop fs, ds }

        ----------------------------------------------------------------------

       1. Set  fd = (fpass+ fstop)/2

       2. Compute

Ωd= 2π fd /fs ,

 

 

       3. According to 20log(ds), From Table 9.3,

           Choose  w[n] and the Filter Length (2N+1) .

       4. Calculate impulse response

               h[n] = hd[n]w[n].

       5. Shift the h[n] to the right by N samples.

       ------------------------------------------------------------------------

         P345, Example 9.7

 

      Band Pass & High Pass Filters

Band Pass Filter

{ fstop,  fpass, f0, fs, ds}

High Pass Filter

{ fstop, fpass , fs, ds  }

1. fd = f0 - (fpass+ fstop)/2

4. h[n]=hd[n]w[n]cos(nΩ0)

       Ω0 = 2π f0 / fs

1. fd = fs - (fpass+ fstop)/2

4. h[n]=hd[n]w[n]cos(nπ)

               P355, Figure 9.45              P359, Example 9.11

 

 

  Band Stop = Low Pass + High Pass

                      HBS(Ω) = HLP(Ω) + HHP(Ω)

                hBS[n] = hLP[n] + hHP[n]

                        ΩpLP < ΩpHP

 

   Band Pass = Low Pass x High Pass

                       HBP(Ω) = HLP(Ω) HHP(Ω)

                 hBP[n] = hLP[n] * hHP[n]

                         ΩpLP > ΩpHP

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

Examples

 

Filtering Speech

Original     Low Pass Filtering      High Pass Filtering

Filtering Music

Original     Low Pass Filtering