Definition & Properties
Diff. Eq., Transfer
Function & DTFT
Sinusoid Explanation
Magnitude & Phase
Response
Poles, Zeros & Filter’s Shape
Homework:
p274: 7.1,
p275: 7.5,
p278:
7.20
Frequency Response频率响应
The discrete time Fourier transform (DTFT) of
System Impulse Response.
F{ h[n]
} = H (Ω), |
 |
F-1{H
(Ω)
} = h[n],
|
 |
Properties
Given
H(Ω) of
h[n]:
P1. Periodicity
H(Ω) =
H(Ω+2π)
P2. Time
Delay
F{ h[n-M]
} = exp(-jMΩ)
H (Ω)
P3. Frequency Shift
#
F{ exp(-jΩ0n) h[n]
} =
H (Ω
+
Ω0)
P4. Linearity
F{ a h1[n]
+ b h2[n] } = aH1
(Ω)
+ b
H2
(Ω)
where
H1(Ω)=F{h1[n]
}, H2(Ω)=F{ h2[n]
}
P5. Conjugacy
#
F{ h* [n]
} = H* (-Ω)
When
h[n]
is real,
H* (-Ω)
= H (Ω)
P6.
Difference
F{ h[n]
- h[n-1] } = [1-exp(-jΩ)]
H (Ω)
P7. Flipping
#
F{ h[-n]
} = H (-Ω)
P8. Upsampling
#
F{ h[n/k]
} = H (kΩ)
P9. Differential
#
F{ n h[n]
} = |
 |
P10.
Convolution
#
F{ x[n]
*
h[n]
} = X(Ω)
H(Ω)
where
F{ h[n]
} = H(Ω)
,
F{ x[n]
} = X(Ω)
P11.
Product
#
F{ h1[n] h2[n]
} = |

|
where
F{ h1[n]
} = H1(Ω)
,
F{ h2[n]
} = H2(Ω)
P12.
Parseval Theorem:
#

|H (Ω)|2
: Power Spectrum Density
Difference Equation,
Transfer
Function & DTFT
Difference Equation
of ARMA Model
自回归滑动平均模型的差分方程
a0y[n] +
a1y[n-1] +
L +
aNy[n-N]
=
b0x[n] + b1x[n-1] +
L + bMx[n-M]
After DTFT using
P2,
Y(Ω)
[a0 +
a1e-jΩ +
L +
aNe-jNΩ
]
= X(Ω)
[b0 + b1e-jΩ +
L + bMe-jMΩ
]
So,
H(Ω)
= Y(Ω)
/ X(Ω)

Transfer Function

z
=>
exp(jΩ)
Sinusoid Explanation
When the input x[n] is sinusoidal,
x[n] = A cos(nΩ0 +Φx)
Short form notation of DTFT
X(Ω0) = A
Ð
Φx
, H(Ω0)
= G
Ð
Φ
According
to
Y(Ω)
= X(Ω)H(Ω)
We have
Y(Ω0)
= X(Ω0)H(Ω0)
= AG
Ð
(Φx+Φ)
Thus
y[n] = AG cos(nΩ0 +Φx+Φ)
Frequency Response is a collection
Magnitude Gain & Phase Delay
for all the frequencies.
H(Ω)
= G(Ω)
Ð
Φ(Ω)
Magnitude & Phase Response
The Shape of the filter is the shape of the
Magnitude Response.
Rewrite
H(Ω)
into:
H(Ω) = |H(Ω)|
Ð
Φ(Ω)
H(Ω + 2π) =
H(Ω)
|H(-Ω)| =
|H(Ω)|
Φ(-Ω)
= -
Φ(Ω)
Magnitude Response
Phase Response

Filter Response
Responses |
Unit |
|H(Ω)|
|
None |
20 log|H(Ω)|
|
dB |
Φ(Ω)
|
Degree
or Radian |
Φ(f
) |
Degree
or Radian |
Filters
Examples: Comb Filter 梳状滤波器

Comb Filter Input
Comb Filter Output
Input (“Hello?
Output (“Hello hello?
Poles, Zeros & Filter’s Shape
Single Pole Filter:
,
,

Three 2-Pole Filters

Any
Filter:


Distance |
Filter |
Poles Closer to
or Zeros
Farther from
ejΩ
|
Larger
Gain
More Selective |
Poles Farther from
or Zeros
Closer to
ejΩ
|
Smaller Gain
Less Selective |
Page 267, Example 7.24 25 26
|