Index

Go Top

Go Top

Go Top

Go Top

Go Top

Chapter 7  Fourier Transforms and Filter Shape

 

 

Definition & Properties 

 

 

Diff. Eq., Transfer Function & DTFT

 

 

Sinusoid Explanation

 

 

Magnitude & Phase Response

 

 

Poles, Zeros & Filter’s Shape

 

 

 

 

 

 

 

 

Homework:

p274: 7.1,   p275: 7.5,   p278: 7.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency Response频率响应

   The discrete time Fourier transform (DTFT) of

        System Impulse Response.

F{ h[n] } = H (Ω), 

F-1{H (Ω) } = h[n], 

 

Properties

       Given H(Ω) of h[n]:

        P1. Periodicity

             H(Ω) = H(Ω+2π)

        P2. Time Delay

             F{ h[n-M] } = exp(-jMΩ) H (Ω)

        P3. Frequency Shift #

             F{ exp(-jΩ0n) h[n] } =  H (Ω + Ω0)

        P4. Linearity

        F{ a h1[n] + b h2[n] } = aH1 (Ω) + b H2 (Ω)

        where  H1(Ω)=F{h1[n] }, H2(Ω)=F{ h2[n] }

        P5. Conjugacy  #

             F{ h* [n] } = H* ()

              When h[n] is real, H* () = H (Ω)

 

        P6. Difference

            F{ h[n] - h[n-1] } = [1-exp(-jΩ)] H (Ω)

 

        P7. Flipping  #

             F{ h[-n] } = H (-Ω)

 

        P8. Upsampling  #

             F{ h[n/k] } = H (kΩ)

 

        P9. Differential  #

 

 F{ n h[n] } =

 

        P10. Convolution   #

           F{ x[n] * h[n] } = X(Ω) H(Ω)

           where  F{ h[n] } = H(Ω) , F{ x[n] } = X(Ω)

 

        P11. Product   #

F{ h1[n] h2[n] } =

 

 

           where  F{ h1[n] } = H1(Ω) , F{ h2[n] } = H2(Ω)

 

        P12. Parseval  Theorem:   #

                     

 

             |H (Ω)|: Power Spectrum Density

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference Equation,

Transfer Function & DTFT

 

 

   Difference Equation of ARMA Model

   自回归滑动平均模型的差分方程

                 a0y[n] + a1y[n-1] + L + aNy[n-N]

              = b0x[n] + b1x[n-1] + L + bMx[n-M]

   After DTFT using P2,

                 Y(Ω) [a0 + a1e-jΩ + L + aNe-j ]

              = X(Ω) [b0 + b1e-jΩ + L + bMe-j ]

   So,

              H(Ω) = Y(Ω) / X(Ω)

                       

 

 

   Transfer Function

                     

 

                        z    =>    exp(jΩ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Sinusoid Explanation 

       When  the input x[n] is sinusoidal,

            x[n] = A cos(nΩ0 +Φx)

       Short form notation of DTFT

            X(Ω0) = A Ð Φx   ,  H(Ω0) = G Ð Φ

       According to

            Y(Ω) = X(Ω)H(Ω)

       We have

            Y(Ω0) = X(Ω0)H(Ω0) = AG Ð (Φx)

       Thus

                  y[n] = AG cos(nΩ0 +Φx)

       Frequency Response is a collection

        Magnitude Gain & Phase Delay

        for all the frequencies.

                    H(Ω) = G(Ω) Ð Φ(Ω)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnitude  & Phase Response

     The Shape of the filter is the shape of the

     Magnitude Response.

     Rewrite H(Ω) into:

            H(Ω) = |H(Ω)| Ð Φ(Ω)

            H(Ω + 2π) = H(Ω)

            |H()| = |H(Ω)|

             Φ() = - Φ(Ω)

 

     Magnitude Response         Phase Response

    

    

                        

     Filter  Response

Responses Unit
|H(Ω)|  None
20 log|H(Ω)| dB
Φ(Ω) Degree   or  Radian
Φ(f ) Degree   or  Radian

 

     Filters Examples: Comb Filter 梳状滤波器

        Comb Filter Input            Comb Filter Output

 

               Input (“Hello?                   Output (“Hello hello?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Poles, Zeros & Filter’s Shape

       Single Pole Filter:

   

            

 

       Three 2-Pole Filters

          

 

         Any Filter:

                  

                 

 

Distance      Filter
Poles Closer to    or Zeros Farther from ejΩ

    Larger Gain

    More Selective

Poles Farther from or Zeros Closer to  ejΩ

    Smaller Gain

    Less Selective

           Page 267, Example 7.24 25 26