Index

 

 

Go Top

 

 

Go Top

 

 

 

 

 

 

 

 

Chapter 6  z Transforms

 

 

 

 

 

 

 

 

 

Region Of Convergence (ROC)

                收敛域

 

 

 

 

 

System Stability系统稳定性

 

 

 

 

 

Homework:

         p225: 6.28,  p229: 6.35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region of Convergence (ROC)

                收敛域

 

x[n]

d [n]

u [n]

 b n u[n]

n u[n]

X(z)

1

 

ROC

All z

|z|>1

|z|>b

|z|>1

         

          Geometric几何(Power幂级数) Series序列:

             

 

         Convergence Condition收敛条件:

          

 

    ROC of Finite Sample Series

                有限样本序列

 

           z ≠ 0 and/or  z ≠ ∞ Q1: Y?

 

    ROC of Right Side Series右边序列

Z Transform:

 

 

 

Convergence

Condition:

 

 

        

 

    ROC of Left Side Series左边序列

Z Transform:

 

 

 

Convergence

Condition:

 

 

 

 

        

 

    ROC of Double Side Series双边序列

 

 

where R1, R2 must satisfy: R1<R2

 

                   

 

Q: Deduce推导 the Z transform  of  -u[-n-1],

then find its ROC.

 

 

 

 

 

 

 

 

 

 

 

 

System Stability系统稳定性

     The Poles and Zeros极点和零点

           From Transfer Function传递函数

                 

                                  

 

 

           Zeros零点 are Roots  of

                b0zN + b1zN-1 + b2zN-2 + ··?+ bMzN-M = 0

                                       

                   Zeros: {cq ; q=1,2, ··? Q } ,

            Q is the highest order of numerator分子.

 

       Poles极点 are Roots of

                a0zN + a1zN-1 + a2zN-2 + ··?+ aN = 0

                   

                      Poles: {dp ; n=1,2, ··? P}

              P is the highest order of denominator分母.

 

Pole-Zero Plot

零极点图

 "X":   Poles极点

"O":  Zeros零点

    

 

     Stability稳定性& ROC

         For Discrete Time, Linear Time Invariant (LTI)

       system h[n],

                      

         When |x[n]|<B , if |y[n]|<∞, the system is Stable.

 

         It is equivalent to: The system is Absolutely

         Summable. 绝对可和

                          

         It is the same thing of

                        

         This means: H(z) is Convergent on the unit circle.

         Conclusion:

              If a LTI system is stable, the ROC of its

              H(z)  must include unit circle.

    

              Left Side                     Right  Side                  Double Sides

           |z|<R2 R2≥1              |z|>R1 R1≤1       R1<|z|<R2 R1≤1≤ R2

 

 

     Poles to Stability极点与稳定性

         If Any Pole lies outside the unit circle,

           System is Unstable 不稳定.

       If the Outermost最远的 Pole is on the unit circle,

           System is Marginally Stable边缘稳定.

       Only when All Poles are inside the unit circle,

           System is Stable稳定.

 

Stability Region for Poles

极点稳定域

 

         The Partial Fraction Expansion of X(z):

                              部分分式展开

 

 

           If there is a pole outside unit circle,

         that means  |βk|>1, then the corresponding

         sub-system:

                      

                    

          |x[n]|<B , |yk[n]| →∞, sub-system Not stable,

                  Thus the whole system is Unstable.

 

     Responses of Stable System

     稳定系统的响应  

 

                                

常数

         h[n]: Impulse Response;   s[n]: Step Response

                      冲激响应                     阶跃响应

 

         Page 213 Fig6.24;     Page 220 Fig6.26.

        The Closer the poles are to the origin,

         the Faster the system reach its Steady State.

 

        If poles are on the Left half of Z plane,

         the Responses alternate交替 between

         Positive and Negative sample by sample.

 

        The Closer the zeros are to the poles,

         the Greater the response being Attenuated衰减.