Index

Go Top

 

Go Top

 

 

 

 

    

Go Top

 

 

 

 

 

 

 

Z Transform Z变换

 

 

 

Properties性质 of Z Transform

 

 

 

Transfer Function传递函数

 

 

 

 

 

Homework:

            P222: 6.6    P22: 6.11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z Transform Z变换

 

     Definition of Z Transform Z变换定义

x[n]                            X(z)

Time Domain时域              Z Domain Z

            Z{·}  denotes代表 Z transform Operation

             z    is a Complex Variant复变量.

 

 

     Z Transforms of Basic Series

     基本序列的Z变换

 

x[n]

d [n]

u [n]

b n u[n]

n u[n]

X(z)

1

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer Function传递函数

     Definition定义

 

 

     Transfer Functions of Typical Systems

                   典型系统的传递函数

                        Z{ x[ n-k ]} = z -k X(z)

         MA Model滑动平均模型

              y[n] = b0x[n] + b1x[n-1] + L + bMx[n-M]

             H(z) = b0 + b1z-1 + L + bMz-M

          ARMA Model 自回归滑动平均模型

              a0y[n] + a1y[n-1] + L + aNy[n-N]

              = b0x[n] + b1x[n-1] + L + bMx[n-M]

                   

 

      System Combination系统组合

           Cascade Connection串联

                H(z) = H1(z)H2(z)

           Parallel Connection并联

                H(z) = H1(z) + H2(z)

 

             Read book page 181 Fig6.6  &   page 183   Fig6.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties性质 of Z Transform

     Basic Properties基本性质

        1. Linearity线性

            Z{a x1[n]+b x2[n]} = a X1(z)+b X2(z)

 

 

        2. Time Shift时移 

            Z{ x[ n-k ]} = z -k X(z)

 

 

-----------------------------------------------------------

 

Q: Given Z transform of x[n] as  X(z),

       deduce推导 the Z transform  of

                

----------------------------------------------------------

 

 

        3. Time Reverse时间倒置

            Z{ x[ - n ]} = X(z -1 )

 

 

        4. Time Upsampling时间扩展

            Z{ x[ n/k ]} = X(z k )

                where  x[ n/k ]=0 if n≠0, k, 2k,...

               k is integer number.

 

 

        5. Zooming缩放

            Z{ an x[n]} = X(a-1z)

 

 

        6. Conjugacy共轭性

            Z{ x*[n]} = X*( z* )

 

 

        7. Differential微分

            

 

 

    Law of Convolution卷积定律

           Y(z) = X(z) H(z), y[n] = x[n]*h[n]

           Z{ x[n]*h[n] } =  X(z) H(z)

 

    Initial Value Theorem初值定理

             If x[n] is a casual series, x[n]=0 for n<0,