Go Top

 

 

Go Top

 

 

Go Top

 

 

Go Top

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4  Difference Equations and Filtering

 

 

 

 

 

 

 

 

 

Filtering and Filter Features特性

 

 

Difference Equations差分方程

 

 

Impulse Response冲激响应

 

 

Step Response阶跃响应

 

 

 

 

 

 

 

 

 

 

 

Filtering and Filter Features特性

           Filtering = Making Selection

                            + Amplification or  Attenuation

                                   放大                  衰减

 

    Cut-off Frequency截止频率

              The frequency where filter makes a -3 dB

           attenuation衰减, comparing with the

           maximum gain增益.

        20log(GC /GM) = -3 dB  or GC /GM = 0.707

    Bandwidth带宽

    Distance between frequencies where

           signal can pass or being blocked. 阻止

      Roll-off滚降

        Steeper Roll-off, Higher Order, Better Quality.

 

             Low Pass Filter            High Pass Filter

         Band Pass Filter          Band Stop Filter

     The Law of Superposition叠加定律

          For system y = f (x), if  y1 + y2 = f ( x1 + x2 ),

         the system is Linear, can be Superposed.

      Time Invariant System时不变系统

           For   y [ n ] = f ( x [ n ] ),

         if  y [ n - K ] = f ( x [ n - K ] ),

         the system is Time Invariant.

      Causal System因果系统

           No Future Data Involved!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Difference Equation 差分方程

     MA (Moving Average滑动平均) Model

  y[n] = b0x[n] + b1x[n-1] + L + bMx[n-M]

 Non-Recursive非迭代的

Linear, Time Invariant, Causal System.

线性时不变因果系统

 

     ARMA Model

          (Auto Regressive Moving Average)

                 自回归              滑动平均

              a0y[n] + a1y[n-1] + L + aNy[n-N]

              = b0x[n] + b1x[n-1] + L + bMx[n-M]

                         {ak  ;  k =0,1,2, ... ,N }  :  AR Coefficients.

              {bk  ;  k =0,1,2, ... ,M }  :  MA Coefficients.

 

 

         Direct Form直型1:

 

    Direct Form直型2:

 w[n] = x[n]  -  a1w[n-1]  - LaNw[n-N ]

      y[n] = b0w[n] + b1w[n-1] + L + bMw[n-M ]

  -

 

 

     ARMA Model is Recursive迭代的

Linear, Time Invariant, Causal System.

线性时不变因果系统

 

 

 

 

 

 

 

 

 

 

Impulse Response冲激响应

The response  of  filter  to the impulse input.

           x [n]  → d [n] ;       y [n] → h [n]

       y[n] = b0x[n] + b1x[n-1] + L + bMx[n-M]

      h[n] = b0 d [n] + b1 d [n-1] + L + bM d [n-M ]

      a0y[n] + a1y[n-1] + L + aNy[n-N]

       = b0x[n] + b1x[n-1] +L + bMx[n-M]

      h[n]= -a1h[n-1] - L -aNh[n-N ]

      +b0d [n] + b1d [n-1] + L + bMd [n-M ]

 

     FIR (Finite Impulse Response)有限冲激响应

     IIR (Infinite Impulse Response)无限冲激响应

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step Response阶跃响应

   The response of a filter to the step input.

           x [n]  → u [n] ;       y [n] → s [n]

        y[n] = b0x[n] + b1x[n-1] + L + bMx[n-M]

      s[n] = b0 u [n] + b1 u [n-1] + L + bM u [n-M ]

          a0y[n] + a1y[n-1] + L + aNy[n-N]

       = b0x[n] + b1x[n-1] + L + bMx[n-M]

      s[n]= -a1s[n-1] - L -aNs[n-N ]

  +b0 u [n] + b1 u [n-1] + L + bM u [n-M ]

 

   Sum of Impulse Responses.

 

 

Input

d [n]

u [n] =d [n]+d [n-1]+L+d [0]

Output

h [n]

s [n] =h [n]+h [n-1]+L+h [0]

For Linear System Only.

 

 

 

 

y=x^2