Index

Go Top

Go Top

Go Top

Go Top

 

Go Top

 

Chapter 14  Signal Processing

 

 

Stochastic Variable 随机变量

 

 

Stochastic Process 随机过程

 

       Mathematic Expectation

           数学期望

 

       Variance & Covariance

           方差与协方差

 

       Auto-Correlation & Cross-

       Correlation

           自相关与互相关

 

 

 

Wiener-Khinchin Theorem

            维纳-辛钦定理

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stochastic (Random) Variable

                随机               变量

 

Deterministic确定的 Stochastic随机的
y=f(x) Noise
sin(t) ???

 

 

 

   Random Variable x:

      If W is a probability space, a random variable x on W is

      a measurable function f to a measurable space D 

      which is frequently taken to be the real number.

     

   Probability Distribution Function

              概率       分布          函数

                     

   Probability Density Function

            概率       密度     函数

                  

       Weight   ↔   Weight  Density

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stochastic Process 随机过程

          Undetermined不确定    Unpredictable不可知

 

          A Time-indexed collection of Random Variables

          (随机变量RV), each of which is defined on the same

          Probability Space(概率空间) "W" and takes values

          on the same Codomain(域) D (often the real R).

                  { f(t): W → D }  ,    tT

          T : Index Set(下标集)

 

 

     Stochastic Process (SP)

        

 

    Probability Distribution & Density:

 

 

 

         For any {t1, t2, ..., tn}, denote f(tk) as Xk:

          If X1 doesn't correlate with  X2,

          then we have Independent SP(独立随机过程)

         

 

         For any {t1 < t2 < ...< tn },

          If (Xk+1 - Xk) doesn't correlate

          with (Xk+r+1 - Xk+r) ,  then we have

          Independent Increment Process(独立增量过程)

 

 

          If Independent SP has

                   Pt1 (x,t) = Pt2 (x,t) = ... = Ptn (x,t)

          then we have Independent Identical Distribution

          (IID) Process(独立同分布过程)

 

 

          If all n-Dimensional Probability Distributions

          Pt1,t2,...,tn (x,t) are all same, (n = 1,2,3,...),

          then we have (Strict-Sense) Stationary SP

                                (狭义平稳随机过程)

 

 

          If E{ f(t) }  and E{ f(t) f(t+t) } don't change with time t,

          then we have Wide-Sense Stationary SP

                                (广义平稳随机过程)

 

 

 

         Discrete SP:  t = {t1, t2, t3, ..., tn}, Discrete Set(离散集)

          Continuous SP:  t R,  Continuous Set(连续集)

            

 

 

          IF tk = kTs ,  (k Z),  then we have

          Random Sequence  (随机序列)  

 

 

          IF f(t)=is a Vector Variable, then we have

          Vector SP(矢量随机过程)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematic Expectation数学期望

                      ---    Mean   均值

 

 

      For a SP:

            

 

 

      For a Finite State Random Event:

            

 

 

      Time  Average

              

 

      Ergodic Process (各态历经过程):

      One Sample can represent the whole Process.

             

 

 

 

 

 

 

 

 

 

 

 

 

Variance & Covariance

 

              

 

              

             

Auto-Correlation 自相关 &

      Cross-Correlation 互相关

 

               

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wiener-Khinchin Theorem

 

         For any SP, Power Spectral Density功率谱密度 and

          Autocorrelation自相关  are  related with

          Fourier Transform :