Index

 

 

Go Top

 

 

 

 

Go Top

 

 

 

Go Top

 

 

 

 

 

 

 

 

Go Top

 

 

 

 

 

Chapter 14  Signal Processing

 

 

 

 

 

Aliasing                  Imaging

         混迭                           镜像

                      

Spectral Leakage (Smearing)

          谱泄漏                    拖尾

 

 

 

Finite Word Length Effect

          有限字长效应

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aliasing

     Frequency Domain

 

 

      Time Domain

          Stereo CD audio signals:

                    Sampling Rate: 44100 Hz

                    16 bits per sample;

                    Bit Rate: 2x16x44100 = 1.41 Mbps

          MP3: Nearly CD Quality, but Bit Rate is only 128 Kbps.

              Perceptual Time Decimation:

                    Weak sounds next to a very loud sound;

                    Weak sounds below Human Hearing Threshold.

                         Sound intensity: The sound power per unit area.

             

                              

An Audibility Threshold Tester could be found at:

 http://www.phys.unsw.edu.au/~jw/hearing.html

 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

 

Imaging

     Frequency Domain

     Time Domain

                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectral Leakage (Smearing)

 

Windowing: Hanning, Hamming, Blackman, Kaiser

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finite Word Length Effect

 

   Notations of Decimal(小数)

            bN...b3b2b1b0 ?/span>b-1b-2b-3...b-M

          

        Natural Decimal System  g = 10 , bi = 0,1,2, ..., 9.

        Binary System:  g = 2 , bi = 0 or 1.

 

   Fixed Point Number:

               b0 ?/span>b1b2b3...bM              (Original Coding)

                                   

                   x = - (2-2 + 2-3 +2-6 ) = - 0.390625

               For any number outside [-1,1]: 

                                 y = x 10K

 

               Complementary Code补码 for Negative Number:

          ?[x]c=1?/span> b1b2b3...b+  0?/span>000... 01

                           x = -0.3125

                          [x]o= 1.0101 (-0.3125)

                          [x]-= 1.1010  (-0.625)

                          [x]c= 1.1011 (-0.6875)= - (1+x)

 

 

   Floating Point Number:

                 s e1e2e3...eN b1b2b3...bM

                   E = e1e2e3...e          B = 0?/span>b1b2b3...bM

                   

 

                      x = (-1)1 21 (2-1 + 2-3 )  = -1.25

 

                                Standard  IEEE 754:   Es = E - 2N-1

                       Single:  ?N =8 , ?M =23

                       Double:  N =11 ,  M =52

 

   Errors of Fixed Point Number

 

 

        Truncation Error

 

                Using L-Bit to present a positive number

                that needs M bits, the maximum Truncation Error:

                    

            

For Negative number,

 

 

               Since Quantization Step is  q = 2-L ,

                         -q < eT ≤ 0  

 

 

 

         Round Error

                     |x|   = 0?/span>b1b2b3...bLbL+1...bM

                   |R[x]| =(0?/span>b1b2b3...bLbL+1...bM

                                              + 0?/span>0  0  0... 0  1)L

                       

            So,      -q/2 <  eR = |R[x]| - |x|   ≤ q/2,  q = 2-L ?/span>

                      

 

   Statistical Analysis of

                     Quantization Error

          Both eT & eR are :

             Stationary Random Process;

             They are irrelevant to x;

             They are white noises;

             They obey the Uniform Probability Distribution.

       

           For Fixed Point Number:

          

 

                     μ = -q/2    σ2T   = q2/12        μ = 0    σ2R   = q2/12

 

 

           SNR

 

 

 

   Quantization Error

 

          ~ in A/D

 

 

 

 

          ~ in Coefficients

 

                           Round:      x > [x]R or x < [x]R

0.3126

0.011 (0.375)

0.3750

0.4374

 

 

 

            ~ in Calculations

 

                          Overflow溢出

x1?/span>(6/8)

0.110

x2 (3/8)

0.011

x1+x2?/span>(9/8)

1.001 (-1/8)

 

 

                          Truncation截断:      Always x < [x]R

x1?/span>(6/8)

0.101_

x2 (3/8)

 x   0.011_

x1?/span>* x2?/span>(9/32)

101_

          101  _

  (1/8)    0.001111_

 

 

 

   Minimize Finite Word Length Effect

 

     More bits

 

     Better Filter Structure

                    

               y[n] = b0x[n] + b1x[n-1] + L + bMx[n-M]

                                     - a1y[n-1] - L - aNy[n-N]

 

More Storage

 

 

 

Less Storage

 

 

 

 

     Using Second Order System (SOS) 

                             Page 116 Fig.4.16